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Abstract—This paper introduces a novel multistage state es-
timation architecture aimed at including synchronized phasor
measurements into power system state estimation. The proposed
architecture keeps unchanged the internal structure of existing
SCADA-based estimators, so that phasor measurements are sep-
arately processed by a distinct estimation module. An additional
stage makes use of principles from estimation fusion theory in
order to combine SCADA- and PMU-based estimates. The pro-
posed multistage scheme improves the quality of the estimates
provided by the SCADA-based estimator and, under certain
observability and correlation conditions, provides the same op-
timal results given by a hybrid simultaneous estimator (that is,
an estimator that simultaneously processes both SCADA and
PMU measurements). The separate processing of conventional
and phasor measurements circumvents the technical challenge
of conciliating, within the same estimation structure, data ob-
tained from different measuring channels and gathered at very
distinct sampling rates. In addition, the execution times tend to
be significantly less than those required by hybrid simultaneous
schemes. The paper describes in detail the multistage structure
of the proposed state estimator and also addresses the benefits
brought about by phasor measurement processing to state esti-
mation accuracy. Results of several case studies conducted on the
IEEE 57-bus, 118-bus, and 300-bus benchmark systems are used
to illustrate the features of the proposed strategy.

Index Terms—Estimation fusion, power system real-time mod-
eling, power system state estimation, synchronized phasor mea-
surements.

I. INTRODUCTION

URING the last decades, power system state estimation

(PSSE) has established itself as the basic tool for real-time
modeling of large electric power networks. As emerging Smart
Grid concepts expand previous paradigms for power system op-
eration and control, PSSE must evolve to keep pace with current
trends [1]. This implies the incorporation of novel concepts and
methods, such as those related to synchronized phasor measure-
ment technology, which makes it possible to accurately mea-
sure bus voltage and branch current synchrophasors, something

Manuscript received May 01, 2012; revised August 31, 2012; accepted Oc-
tober 27, 2012. Date of publication January 09, 2013; date of current version
April 18, 2013. Paper no. TPWRS-00454-2012.

The authors are with the Department of Electrical Engineering, Federal Uni-
versity of Santa Catarina, Florianopolis, SC, Brazil (e-mail: simoes@jieee.org;
andrealbuquerque@ieee.org; dmbezz@hotmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2012.2232315

previously infeasible with conventional SCADA systems. As a
consequence, the use of phasor measurement units (PMUs) in
PSSE has deserved much attention in recent years [2]-[8].

In spite of the undisputed advantages of using synchropha-
sors for power system real-time modeling, it is unlikely that ex-
isting SCADA systems be entirely superseded by the PMU tech-
nology in the short run. Reasons for this include the still limited
number of synchrophasor units deployed in real systems world-
wide, which in most cases is insufficient to provide full system
observability. In addition, one must take into account the sig-
nificant investments made in the past to build complex SCADA
infrastructures that should not be simply discarded. Hence, one
envisages a period of several years during which both technolo-
gies will coexist.

As far as PSSE is concerned, the above scenario leads to
the challenge of how to conceive estimation strategies able to
benefit from both technologies. A straightforward solution is
to devise state estimators able to simultaneously process both
SCADA and PMU measurements. This scheme is referred to as
hybrid simultaneous state estimation [5], [9].

However, the simultaneous approach faces serious practical
obstacles. The most evident is the need to introduce significant
changes to existing state estimation software. Moreover, PMU
measuring channels are distinct from those used by SCADA,
and meters are sampled at very different rates. Previous research
efforts have also recognized those challenges [2], [4], [5] and
proposed alternative estimation schemes. All of them entail the
decoupling of the estimation process into two stages, each of
them devised to process each measurement type (SCADA or
PMU).

This paper proposes a novel state estimation architecture
based on Estimation Fusion methods which exhibits a number
of desirable properties. First of all, the proposed strategy
does not impose any change to the structure of existing
SCADA-based state estimators (which we refer to as SSE).
Instead, it is considered as one of the estimation modules of a
multistage structure, which also comprises a PMU-based state
estimation module (or PSE) that is devised to process only
phasor measurements. The resulting SSE and PSE estimates
are then combined, or fused, in a subsequent Fusion stage,
producing a final vector of estimates. The algorithm underlying
the Fusion stage is based on Multisensor Data Fusion Theory, a
relatively recent research field related to the Aerospace, Infor-
mation Theory and Signal Processing areas [10]. In this paper,
we apply to PSSE the estimation fusion methods presented
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in detail in [11]-[13]. We also make use of theoretical results
developed in connection with other research efforts in the area,
such as those reported in [14]-[16].

Additional features of the proposed strategy are: 1) no restric-
tions are imposed to the algorithm of the PSE estimator, which
is completely independent of its SCADA counterpart and can,
for instance, be based on a linear measurement model; 2) ob-
servability with respect to phasor measurements is not assumed
since, as discussed in Section V-C, PMU-unobservability can
be circumvented at the PSE stage through the use of a priori
state information; 3) last but not least, the Fusion stage relies
on a minimum variance criterion, which produces an unbiased,
minimum variance final estimate [14]. That is to say, in the ab-
sence of gross measurement errors, the state estimates provided
by the fusion approach are free of bias and present minimum
deviation from the true state values. In this paper, we also show
that the computational issues related to the fusion stage are effi-
ciently resolved by using techniques and tools familiar to power
system engineers, such as Gauss elimination and sparsity.

Section II of this paper briefly reviews the conventional PSSE
background. The distinct strategies to include phasor measure-
ments into PSSE are detailed in Section III. The principles of es-
timation fusion methods are presented in Section IV, followed
by their proposed application to PSSE, in Section V. Results
of several case studies performed on the 57-bus, 118-bus, and
300-bus IEEE benchmark systems are presented and analyzed.
Finally, Section VII provides the concluding remarks.

II. STATE ESTIMATION BACKGROUND

A. Weighted Least Squares and Gauss-Newton Method

Power system state estimation provides state estimates by
processing real-time data gathered from remote meters. Con-
sider that a set of /m measurements is taken on an /N -bus power
network. The nonlinear measurement model that relates mea-
surements and state variables is given by

z=h(x)+e 1)
where z is the m X 1 measurement vector, x is the n x 1 vector of
state variables to be estimated, h(x) is the m x 1 vector of non-
linear functions relating measured quantities and state variables,
and ¢ is the /. X 1 measurement error vector, whose . x m co-
variance matrix is denoted by R.. The number of state variables
is given by n = 2N — 1. Measurements are usually assumed
uncorrelated, so that R is diagonal, with its ¢th diagonal entry
equal to o2, which is the variance of the error of measurement 4.

The weighted least-squares (WLS) formulation to the PSSE
problem is based on the minimization of the weighted sum of
the squared residuals
h(x)].

min J(%x) = %[z ~h(x)]'R [z - )

The above problem is solved through the Gauss-Newton
method, leading to an iterative process in which the so-called
normal equation is solved in each iteration [17]-[19]:

GAx=H'R 'Az 3)

1911

where G = (H R~ ! H) is referred to as gain matrix; H is the
m x n Jacobian matrix of h(x) computed at a given point x*,
and Az = z — h(x*).

The solution of (3) yields vector Ax of increments to the
states, so that the updated state vector is obtained as

xFl = xF 4 Ax.

“

The convergence of the iterative procedure is attained when
Ax becomes smaller than a pre-specified tolerance.

It is often desirable to assess the level of confidence on the
accuracy of the state estimates. This is provided by the covari-
ance matrix of the estimation errors [17], given by

P=G'!'=HR'H )

B. A Priori State Information

A priori information consists of additional knowledge on the
state variables available prior to the execution of state estima-
tion. It is usually possible to assign a degree of confidence to
such data, under the form of a covariance matrix. 4 priori state
values contribute to state estimation in a similar fashion as mea-
sured data, although their accuracies, as given by the the corre-
sponding variances, are usually less than the telemetered ones.
In PSSE, a priori information is sometimes used to circumvent
observability problems, such as those that occur in topology
error identification studies [20].

If x denotes the vector of a priori state values and Py is the
n X n corresponding covariance matrix, a priori information can
be embedded into the WLS problem by augmenting the objec-
tive function (2) as [21]

min J(%) = %[z —h(X)]'R7 !z — h(x)]
Fi(k - %)TP (% - %).

: ©)

The optimality conditions for Problem (6) lead to the following
extended version of the normal equation [21]:

[H'R'H+P,'|Ax=H'R 'Az+P;'Ax (7)

where AX 2 (x — x*).

C. Including A Priori Information in PSSE Through
Orthogonal Estimators

Orthogonal methods based on Givens rotations have been
originally proposed as alternative solvers for WLS estimators
in order to avoid numerical instability problems that may occur
in the solution of normal equations [21]-[23]. In addition to that,
however, some variants of Givens rotations-based state estima-
tors, such as the 3-multiplier version [22], exhibit some inter-
esting properties that facilitate the processing of a priori state
information. In fact, it is shown in [20] that those estimators are
able to take a priori information into account at the initializa-
tion stage, so that no extra computational cost is incurred.

In this paper, we take advantage of the above described
property in order to get around observability problems that
arise at the PMU-based state estimation stage, as discussed in
Section V-C.
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Fig. 1. Centralized estimator.

III. PHASOR MEASUREMENTS IN POWER
SYSTEM STATE ESTIMATION

During the 1980s, the advent of the Global Positioning
System (GPS) and improvements on synchronizing techniques
made it possible the acquisition of measurements under the
same time reference at geographically distant locations of
electric power networks [24]. Those principles led to the de-
velopment of the so-called Synchronized Phasor Measurement
Systems, composed of PMUs installed at substations of the
power network. Through such systems, reliable phasor mea-
surements of magnitude and phase angle of nodal voltages and
branch currents become available at high sampling rates to
several power system applications. Real-time power system
modeling, and PSSE in particular, are among those functions
which can draw significant benefits from the availability of
PMU measurements.

However, the incorporation of PMU data into PSSE poses
a number of challenges. First of all, the penetration of syn-
chrophasor units in power system is still limited, and dramatic
changes in such scenario are not expected in the near future. As
a consequence, available phasor data must be combined with
conventional SCADA measurements in order to perform PSSE.
This, in turn, raises other hardware and software challenges con-
nected to issues such as: the very distinct sampling ratios with
which PMU and SCADA measurements are gathered, the inte-
gration of distinct measurement channels, and the fact that ex-
isting EMS software is not prepared to process phasor variables.
Alternative forms to include PMU data into PSSE are discussed
in the remaining of this section.

A. Hybrid Simultaneous State Estimation

The straightforward solution to include PMU data into PSSE
is to devise state estimators able to simultaneously process
both SCADA and PMU measurements. Such a strategy is
referred to in this paper as hybrid simultaneous state estimation
(HSSE),and is illustrated in Fig. 1. The HSSE strategy has
been widely investigated [7], [9], [25]-[27] and in theory
exhibits very good results. In fact, an important property of this
strategy is its joint optimality, in the sense that, by processing
all available SCADA and PMU measurements by the same
estimator, the best solution that fits the hybrid measurement
set is obtained. However, a number of practical issues may
undermine the adoption of the hybrid simultaneous solution,
such as the need to conciliate the great difference in sampling
ratios of PMU and SCADA data, and the fact that existing EMS

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013

software must undergo significant changes in order to accom-
modate phasor data processing. A possible alternative to handle
the distinct features of both technologies is to devise novel state
estimation architectures according to which SCADA and PMU
measurement subsets are respectively processed by a distinct
estimation module able to recognize the properties of each
subset. This alternative approach is discussed in the sequel.

B. Multistage State Estimation

In order to cope with the practical difficulties that afflict the
hybrid simultaneous solution, state estimation structures com-
posed by two or more stages can be devised, in such a way that
SCADA and PMU data are processed by separate estimation
modules. The integration of the estimates produced by the in-
dividual modules is either embedded in the second stage, along
with the processing of the phasor measurements, or carried out
in a third independent stage, depending on the conception of the
estimation architecture. Examples of two-stage hybrid estima-
tors of the former type are the scheme proposed in [2], which
treats the SCADA-based estimates produced by the first stage
as pseudo-measurements, jointly processed with PMU data in
the second stage; and the structure presented in [4], in which the
SCADA-based estimates are considered as a priori information
by an orthogonal estimator that processes the PMU measure-
ments. A minor, intermediate step may be needed for conversion
from polar to rectangular coordinates, in order to take advantage
of the rectangular formulation linearity.

A definite advantage of the architectures proposed in [2] and
[4] is that they do not require any change in existing SCADA-
based state estimators. On the other hand, both schemes rely
on simplifying assumptions concerning statistical properties of
the final estimates. In addition, the decoupling of the estimation
process into two stages does not provide the optimal solution.

In this paper, a novel multistage estimation architecture is
proposed whose main feature is the ability to preserve the opti-
mality of the simultaneous state estimation solution, under cer-
tain conditions, which are discussed in Section IV-C. It also
maintains the desirable properties of two-stage strategies, while
avoiding its simplifying assumptions. The proposed estimator
relies on Estimation Fusion theory, which is briefly reviewed in
the next section.

IV. ESTIMATION FUSION METHODS

A. Concepts From Multisensor Data Fusion Theory

Multisensor Data Fusion (MDF) theory is a relatively recent
research and development field related to the Aerospace, In-
formation Theory and Signal Processing area [10], and deals
with processes or environments monitored by distinct classes
of sensors. The sensors pertaining to each of such classes
may share common characteristics, such as the underlying
technology, level of accuracy, etc. The problem then arises as
how to combine the data generated by the various sensors in an
optimal manner, in the sense that the quality of the knowledge
so produced about the monitored process is improved with
respect to the one obtained from a single sensor class. This
concept of gathering and combining information from several
sources to improve those available with a single sensor class
can be borrowed by PSSE, aiming at combining (or fusing)
SCADA and phasor data. In this context, a branch of MDF is
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Fig. 2. Decentralized estimator.

of particular interest: decentralized estimation fusion, that is
concerned with combining processed data generated by distinct
sets of sensors [10], [12], [14]. Fig. 2 illustrates that particular
fusion architecture.

The following subsections summarize the multisensor data
fusion mathematical formulation and the main results presented
in [11]-[13]. Attention is then focused on the two sensor
problem, specifically addressed in [16]. Some theoretical re-
sults derived in [15] are also employed.

B. Mathematical Formulation of the Decentralized Estimation
Fusion Problem

Consider that a particular process is monitored by [V, distinct
sets of sensors. Based on the data available from each set, we
assume that a n x 1 vector of estimates X;,2 = 1,..., N, is
obtained for the state variables of the process. In addition, the
resulting estimation errors can be correlated, so that the corre-
sponding n - Ny x n - N, covariance matrix is given by

Py Py,
P=| . . . )
Py.1

s

P N, N,

The optimal estimation fusion problem is formulated as a par-
ticular linear combination of the individual estimates X;, that is

X = Wik + -+ Wh 2y, 2 W%, ©9)

where Wi,...,Wy, are n X n weighting matrices,
A . . .

W = [Wi,... W{ ], and X, = [X],...,X} |". The

W, weighting matrices are obtained by solving the following

optimization problem:

min E[(W')x, — x)(W'%, — x)']
Ng
s.to Y W, = (10)

=1

where F[-] is the expectation operator, x is the vector of true
values for the process state variables and I is the n X 7 identity
matrix. Therefore, Problem (10) aims at minimizing the covari-
ance of the estimation error (X* — x). This estimator is therefore
referred to as Linear Unbiased Minimum Variance, or Linear
Minimum Mean Square Error (LMMSE), or Best Linear Unbi-
ased Estimation (BLUE) Estimator [14], [15]. If the covariance
matrix P in (8) is nonsingular, it can be shown that the solution
of Problem (10) is unique, and the weighting matrices W, are
given by [11]

N,
W, = (z PUC1>
k=1

-1

di=1,...,N,. (11)

N,
~1
> Py

Jk=1
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The case when only two classes of sensors are considered is of
particular interest in this paper. For N, = 2, (9) yields

X = Wik; + Wik, (12)
and the weighting matrices are obtained from (11). For the par-
ticular case of only two classes of sensors, those expressions can
be considerably simplified, as shown in [12, p. 172] and also in
[13, Appendix]. Accordingly, the following optimal estimate re-
sults:

X* = (Poy — Po1)(P1y + Poy — P1p — Poy) '%

+(P11 — P12)(P11 + Pay — Ppo — Poy) '%5. (13)

Equation (13) is referred to as Bar-Shalom-Campo fusion for-
mula, and it is applicable to the particular case of two classes of
sensors [16]. Moreover, if the individual estimates X; € X2 can
be assumed as uncorrelated, the above fusion formula becomes

X* = Poo(P11 + Poo) '%1 + P11 (P11 + Pa) %o, (14)

C. Optimality of the Decentralized Fusion Estimator

An important theoretical property of the Decentralized Fu-
sion Estimator that aggregates N, estimators as described in
the previous subsection is that, under certain conditions to be
detailed next, its results are basically the same produced by a
centralized (that is, a hybrid simultaneous) estimator that jointly
processes the whole set of measurements made available by the
Ng sets of sensors. That amounts to saying that there is no per-
formance degradation incurred by adopting the decentralized
strategy, as long as those conditions are satisfied.

Specifically, the conditions for the optimal decentralized and
centralized fusion estimators to exhibit the same performance
are [15]: 1) the measurement errors are uncorrelated across
sensor sets, and 2) the observation matrices have full column
rank. The term “observation matrix” refers to the matrix which
relates the measurement and state vectors in a linear measure-
ment model; it corresponds to the Jacobian matrix in the PSSE
problem.

In the hybrid SCADA and PMU state estimation context, the
column rank requirement above implies that the electrical net-
work must be both SCADA- and PMU-observable. On the other
hand, the error uncorrelation condition would be granted by as-
suming that SCADA and PMU metering channels are indepen-
dent. Those issues are further discussed in the next section.

V. ESTIMATION FUSION APPLIED
TO SCADA- AND PMU-BASED PSSE

A. Fusion of SCADA- and PMU-Based Estimates

In this paper, we propose the application of Multisensor Data
Fusion concepts to incorporate PMU measurements into PSSE.
It is based on the interpretation of SCADA and phasor mea-
suring systems as distinct classes of sensors in charge of mon-
itoring the same process, which is the power network. Accord-
ingly, each of those monitoring systems processes its own mea-
surement set in order to produce independent state estimates that
reflect the current operating condition of the power system. We
refer to SCADA-based and PMU-based state estimators as SSE
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and PSE, respectively. We also denote by zg and zp the mea-
surement vectors whose processing by SSE and PSE, respec-
tively, produces states estimates Xg and X p. Finally, the corre-
sponding error covariance matrices are denoted by Ps and Pp.
The latter can be computed as given by (5) by applying indices
S or P to refer to the appropriate Jacobian and measurement
error covariance matrices.

Assuming that individual estimates xg and Xp are available,
along with their respective error covariance matrices, our objec-
tive is to determine how they can be optimally combined in the
Fusion Module of Fig. 2. For this purpose, we also make use of
the reasonable assumption that the SCADA and PMU metering
channels are independent, so that the respective estimation er-
rors are uncorrelated. As a consequence, (14) applies, yielding

x* :Pp(Ps-i-Pp)il)A(s+P5(PS+PP)71)ACP. (15)

Since the expression (Pg + P p)’1 is common to both terms

in the rhs of (15), it is interesting to notice that the matrix that
actually defines the weight of each component estimate X s and
% p of the optimal solution is the error covariance matrix asso-
ciated with the estimate provided by the other component. Con-
sidering that less accurate estimates imply a covariance matrix
with larger values, it follows that better quality estimates receive
larger weights, as one would expect.

We henceforth refer to the estimator based on the above prin-
ciple as Fusion State Estimator (FSE).

B. Computational Aspects

In the form presented in (15), the Bar-Shalom-Campo equa-
tion is not amenable for application to large networks, due to
the explicit matrix inversion on its right-hand side. Fortunately,
however, it is possible to develop an alternative form for that
equation that prevents those computational difficulties. In order
to do so, we go back to the original expressions for the optimal
weighting matrices given by (11), and then apply the uncorrela-
tion assumption regarding zs and zp. If in addition we use (5)
to define the SSE and PSE gain matrices G g and G p, and also
consider the fact that the covariance matrices are symmetric,
(15) becomes

X* = (Gs+Gp) 'Gsxs + (Gs + Gp) 'Gpxp (16)
which can be rewritten as
(G5+GP)X* = Ggxs + GpXp. (17)

Equation (17) can be solved by sparse triangular factorization
and forward/back substitution, taking also advantage from
the fact that gain matrices G, and Gp are available from the
individual SSE and PSE solutions. Notice also that the rhs
vector consists of a weighted combination of SSE and PSE
estimates.

C. PMU-Observability Issues

1) PMU-Unobservable Networks: A first-glance interpre-
tation of (15) suggests that both SCADA-observability and
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PMU-observability constitute necessary conditions for ap-
plying the estimation fusion strategy, since those properties are
required for computing the individual estimates to be fused,
ie., Xg and Xp.

The assumption that the network is observable with respect
to SCADA measurements is realistic, since existing SCADA-
based state estimators employ metering schemes which are de-
signed to provide observability even under stringent conditions.
The same does not apply, however, to PMU-observability, since
PMU penetration in power networks is still limited, and no dra-
matic changes concerning this are expected in the near future.

Fortunately, a closer look into the problem reveals that PMU-
unobservability can be circumvented by incorporating comple-
mentary information into the PSE stage. Along with the existing
phasor measurements, such complementary data are used to arti-
ficially provide observability and thus to allow the computation
of x p. Since that additional information is usually approximate
and possibly inaccurate, care must be taken in order to avoid
contaminating the estimates directly based on the PMU mea-
surements produced by the PSE module. This can be accom-
plished by combining a judicious choice of variance values and
the filtering properties of the state fusion process, as explained
next.

The above mentioned complementary information can take
different forms, pseudo-measurements being an obvious possi-
bility. Nevertheless, in this paper we resort to a priori state in-
formation data, for two reasons: first of all, some kind of infor-
mation on state variable values is always available, either as re-
cently calculated state estimates or, lacking them, standard “ex-
pected” values for bus complex voltages. The second and most
important reason is computational: as discussed in Section II,
there are variants of Givens rotations-based estimators which
process a priori information at initialization time, so that no
computational cost is incurred.

Therefore, the PMU-unobservability issue is taken care of by
assigning a priori state information to every PMU-unobserv-
able bus of the network. What remains to be discussed is the
impact of such approximate data on the quality of the final state
estimates. In regard to that, two aspects are paramount: the crit-
icality of such data, and the variances assigned to them. The
former stems from the fact that the a priori data is essential to
ensure observability; an important implication derives from the
well known result that the residuals of critical data are zero [28],
thus ensuring that the estimates for neighboring states will not
be contaminated by inaccurate a priori values.

The second factor concerns the variances assigned to a priori
state values. The larger degree of uncertainty associated to them
must be accounted for when defining their variances, which
compose matrix P of Section II-B. Thus, the latter are usu-
ally some orders of magnitude larger than the telemeasurement
variances. At the outcome of the PSE stage, those large entries
will be reflected on the error covariance matrix P p, whose di-
agonal values corresponding to the PMU-unobservable states,
will be also large. Since large variances lead to small weighting
factors at the fusion step, the estimates provided for those states
by the PSE module receive very small weights, so that the cor-
responding SCADA-based estimates eventually prevail at the
completion of the fusion stage. In other words, provided that
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their variances are properly defined, the effects of assumed a
priori information are filtered out in the final fusion stage and
have no significant effect on the optimal estimates. Such claim
is indeed confirmed by the results presented in Section VI.

2) Observability x Optimality: Additional remarks are also
in order concerning the optimality of the fusion-based multi-
stage estimator when the power network is not PMU-observ-
able. As discussed in Section IV-C, the performances of the
proposed estimator and of a hybrid simultaneous one are es-
sentially the same, provided that some conditions are fulfilled.
Those include the observability with respect to every particular
set of sensors involved in the fusion strategy. Whenever the ob-
servability conditions can only be granted through the use of
pseudo-measurements or a priori information, as discussed in
the previous subsection, some degradation in performance is to
be expected. In order to measure such a performance degrada-
tion, we make use of the Degree of Suboptimality, psubopt

AT =T
LSubopt = T X 100%

(18)
where J* is the weighted sum of the squared residuals computed
for the hybrid simultaneous state estimator (HSSE), which the-
oretically yields the optimal solution, and .J is the same quantity
computed from the results provided by the multistage estimator.
This index has been previously used in the literature to evaluate
how much the quality of a sub-optimal strategy deviates from
the optimal one [29].

In the next section, such an index is applied to assess the
performance of the proposed strategy under distinct conditions.

D. Impact on Bad Data Analysis

This paper is mainly intended to apply the estimation fu-
sion principles in order to incorporate phasor measurements into
PSSE. Nevertheless, the impact of the fusion strategy on bad
data processing deserves some attention, since error analysis is
an essential attribute of any power system state estimator. Bad
data analysis in the context of hybrid state estimation has been
previously addressed in [6]. However, fusion-based estimators
exhibit a distinct architecture, so that the bad data issue has to
be re-examined. In this respect, two situations should be ad-
dressed, namely, gross errors in SCADA measurements and bad
data among phasor measurements.

Bad data analysis for SCADA-based state estimators has been
amatter of interest through many years, and a variety of methods
for gross errors detection and identification are available [18],
[19], [30]. A common characteristic of all those methods is the
requirement of a certain level of local measurement redundancy
to ensure good performance.

That knowledge can be transported to the multistage state es-
timation environment proposed in this paper by performing bad
data analysis at the SSE module, through the application of re-
liable methods such as those described in [30], for instance. By
that means, one would ensure that the SCADA-based estimates
to be later fused with the results of the PSE module are free
from the influence of bad data. However, performance still de-
pends on the existence of adequate levels of local redundancy.
Although that is usually granted for most regions comprising a
given power network, there are often weak spots in which the
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available telemetered information is insufficient, so that critical
measurements (whose gross errors are undetectable, [28]) and
critical sets (whose gross errors are unidentifiable, [30]) may
occur.

In those cases, the multistage estimation architecture based on
the fusion principles enables one to take full advantage of the
extra redundancy and enhanced accuracy provided by phasor
measurements. In fact, depending on the location of the PMUs
in the power network, estimation errors due to bad data on crit-
ical measurements and critical sets can be prevented through
the use of the fusion strategy, as demonstrated in the prelimi-
nary studies on this topic reported in [31].

The problem which remains to be addressed is the occurrence
of bad data among phasor measurements. Simply replicating
the above described SSE strategy at the PSE stage would imply
PMU-observability. Since this assumption is seen as unrealistic
at least for some years to come, alternative approaches must be
considered.

We thus envision a strategy which relies on making both
SCADA and PMU measurement values available to be pro-
cessed once again, this time at a stage following the computation
of the final fused estimates. Such processing would take place
either as a final step within the fusion stage itself, or at an extra
real-time modeling module (a final “result validation” stage).
In either case, by using 1) the final estimation fusion results;
2) measurement values previously employed to generate both
X g and X p, and 3) the corresponding error covariance matrices,
then residual or estimation error analysis can be performed to
investigate the presence of bad data among phasor measure-
ments. Furthermore, gross SCADA measurements that could
have passed unnoticed in the SSE stage could also be identified
at this phase. This rationale will be explored in future research
efforts on this topic.

VI. SIMULATION RESULTS

This section illustrates the application of the proposed
multi-stage Fusion State Estimator, FSE, through several case
studies conducted with the IEEE 57-bus, 118-bus, and 300-bus
test systems. Data for these networks are available in [32]. Three
distinct estimators are employed as references to evaluate the
FSE performance: a hybrid simultaneous estimator (HSSE), a
conventional SCADA-based estimator (SSE) and an estimator
that only processes phasor measurements (PSE). All estima-
tors make use of an orthogonal, Givens rotations-based WLS
solver, which also exhibits a priori information processing
capability [4]. They have been implemented in FORTRAN,
using the Intel Visual Fortran compiler, and run on a 2.20 GHz,
6.0 GB of RAM, Intel Core i7 computer. A Gaussian random
number generator is used to simulate the measurement errors,
whose assumed accuracy levels are 1% for SCADA and 0, 1%
for PMU measurements. Reported results for each case are
obtained by averaging the outcomes of one hundred performed
simulations, each of which considering distinct measurement
errors. The SCADA metering schemes are composed of ac-
tive/reactive power injection, active/reactive power flow, and
bus voltage magnitude measurements, which are evenly dis-
tributed throughout the network. All power measurements are
taken in active/reactive pairs. PMU metering schemes comprise
bus voltage and branch current phasor measurements. The a
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TABLE 1
NUMBER OF SCADA AND PMU MEASUREMENTS
| Case A || Case B |
PIQ |V| th |V I ||PQ |V|] th |V I

IEEE 57-bus | 37 36 48
IEEE 118-bus | 72 67 116
IEEE 300-bus | - - - - -

46 41| 37 36 48 | 11 4
8 94| 72 67 116| 35 31
234 222 305|145 175

priori state values used in Section VI-B are equal to 1.0pu/0°,
with variances in the 1 x 10® range.

To assess the performance of the estimators, we make use
of the mean of estimation errors and the voltage metric defined
in [33]

2
M(lCCV — H"/error "/jtrue _ "/jest

L= 12 (19)

where Vj“'“e and ‘./']-‘35“ are the “true” and estimated complex
phasor voltage at the jth bus, respectively.

Simulations are grouped into three cases, referred to as cases
A, B and C, which are characterized as follows:

¢ Case A—The base case, in which the electrical network is
both SCADA- and PMU-observable.

* Case B—It is assumed that the electrical network is
SCADA-observable but the number of deployed PMUs
is insufficient to ensure PMU-observability. A priori
state values equal to 1.0 pu/0° are then assigned to the
unobservable buses in order to restore observability (see
Section V-C).

+ Case C—As in Case B, a priori state information is em-
ployed to artificially ensure observability. However, the a
priori state values are now based on the results of a pre-
vious state estimation study. In this case, simulations are
conducted only on the 57-bus network.

The metering schemes used in Cases A and B are summa-
rized in Tables I and II. For Case C, the same metering scheme
of Case B is employed. The notation used in Table I is as fol-
lows: P(Q) stands for active (reactive) power injection measure-
ments; t(u) refers to active (reactive) power flow measurements;
and |V| stands for voltage magnitude measurements. All of the
above are SCADA measurements. V' (I) represents voltage (cur-
rent) phasor measurements. The total number of measurements
for each test system and each case, as well as the amount of a
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Fig. 3. Absolute value of estimation errors. Case A, IEEE 57-bus system. (a) Voltage magnitude error. (b) Voltage phase angle error.

TABLE 11
TOTAL NUMBER OF MEASUREMENTS FOR EACH SYSTEM

| Case A ” Case B
MSSE | MPSE | Nz || MSSE | MPSE | Nz
IEEE 57-bus 206 87 0 206 15 84
IEEE 118-bus | 443 180 0 443 66 112
IEEE 300-bus - - - 1300 320 134

priori data required to ensure observability at the PSE module
are presented in Table II. In this table, mgsy and mpgg stand
for the number of SCADA and phasor measurements, respec-
tively, and nz denotes the number of state variables unobserv-
able with only phasor measurements (and therefore the amount
of required a priori state data). It is assumed that each PMU pro-
vides a bus voltage phasor measurement, and may also supply
one or more current phasor measurements on branches incident
to the same bus.

A. SCADA- and PMU-Observable Network

Simulations in this section consider the ideal scenario in
which the PMU penetration is sufficient to ensure network
observability. Fig. 3 presents the estimation errors associated to
the results provided by all simulated strategies, for both voltage
magnitude and phase angle at all buses of the 57-bus system.
The FSE plot clearly shows that the results of the conven-
tional SCADA estimator, labeled as SSE, are greatly enhanced
through their fusion with the PSE estimates. In addition, it
is also visible the coincidence of the FSE trace with the one
produced by the optimal HSSE estimator. The results obtained
for the 118-bus system are presented in Fig. 4 and basically
follow the same patterns already observed in Fig. 3. We can
thus conclude that the simulations for both test systems confirm
the optimality of the FSE results under full PMU-observability
conditions, as discussed in Section IV-C.

The numerical performance indices computed for all estima-
tors shown in Table III are fully consistent with the plots in
Figs. 3 and 4 and also confirm the FSE theoretical properties.
Notice that the numerical values of all indices calculated for the
two networks indicate the same performance of the FSE and
the HSSE strategies. Furthermore, a reduction of about 90%
in the voltage metric is achieved by using the FSE in lieu of
the SSE approach, which quantifies the quality gains yielded
by the estimation fusion strategy in this case. Finally, Table IV
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Fig. 4. Absolute value of estimation errors. Case A, IEEE 118-bus system. (a) Voltage magnitude error. (b) Voltage phase angle error.

TABLE III
PERFORMANCE INDEXES FOR CASE A

(all results as factors of 10~3)

| IEEE 57-bus | IEEE 118-bus |
Voltage  Error Mean | Voltage Error Mean
Estimator | Metric |V 4 Metric  |V| )
SSE 8.30 037  0.37 7.70 0.34 048
PSE 1.80 0.17  0.04 2.60 0.17  0.04
HSSE 0.67 0.03  0.03 1.10 0.07 0.04
FSE 0.68 0.03  0.03 1.10 0.07 0.04
TABLE IV
DEGREE OF SUBOPTIMALITY FOR CASE A
| | IEEE 57-bus | IEEE 118-bus
Estimator J(f() HUSubOpt J()A() HUSubOpt
HSSE 7.049 o 22.401 o
FSE 7.051 0.033 % 22412 0.049 %

compares the WLS objective function values obtained from the
FSE and HSSE approaches, and also presents the degree of sub-
optimality calculated for the two benchmark systems. Consid-
ering the magnitude of J(X) values, the difference in objective
function values are in the numerical noise range, so that the de-
grees of suboptimality computed for both systems are virtually
zero. This once more confirms the theoretical conclusions of
Section I'V-C.

B. Unobservable Network With Respect to Phasor
Measurements: Flat Voltage Profile as A Priori Information

This subsection considers the realistic situation in which the
PMU deployment is limited, so that the network is not PMU-
observable. As remarked in Section V-C, under such conditions
the use of a priori information is essential to get a solution from
the PSE module.

Table V presents the values of the performance indices for all
considered strategies and all three test systems. It becomes im-
mediately clear that PSE results are not useful by themselves,
what is expected due to the use of arbitrary a priori state values
to restore PMU-observability. However, even under those se-
vere conditions, the FSE and HSSE indices in Table V indicate
that those estimators outperform the conventional SSE strategy.

This conclusion is confirmed by the estimated state errors pro-
vided in Figs. 5 and 6 for the 57- and 118-bus networks, re-
spectively (results for the 300-bus system are omitted due to
space limitations). It is again possible to see that the proposed
fusion estimator is able to take advantage of the PSE estimates,
even when obtained from a limited number of PMU data, in
order to enhance the conventional SSE results. Also, FSE es-
timation errors are consistently close to, actually almost coin-
cident with, those of the optimal HSSE strategy. As discussed
at Section II-B, due to the high variance values ascribed to a
priori information, the fusion procedure takes care of “filtering
out” the influence of the arbitrary state values, so that they do
not affect the FSE results.

The arbitrary a priori information needed to ensure observ-
ability has some effect on the optimality of the fusion solution,
as antecipated in Section V-C. This can be observed by com-
paring the degrees of suboptimality in Table VI with those of
Section VI-A, shown in Table IV. Although the performance
degradation with respect to the optimal strategy in the current
case is more noticeable, it still remains in a very low range, in-
dicating that the quality of the FSE results deviates very little
from the optimal performance.

C. Unobservable Network With Respect to Phasor
Measurements: Previous Estimate as A Priori Information

This case differs from Case B in that, in order to circumvent
the unobservability of the network with respect to the avail-
able set of phasor measurements, complex voltage estimates ob-
tained from a previous state estimation run are used in lieu of a
flat voltage profile at the PSE module. Only the results for the
57-bus network are presented for this case.

The situation conceived in this experiment assumes that the
previous estimation results corresponds to the system operating
condition which immediately precedes the one of interest. It is
also assumed that system loading is increasing, and the total load
at the previous operating point is 98% of the current condition.
Such a reducing factor is applied to all individual loads of the
network, and the complex bus voltages computed for this load
condition are used as a priori state information at the unobserv-
able buses. The variances assigned to that a priori data are in
the range of 1 x 10", that is, they are respectively one and two
degrees of magnitude larger than that of SCADA and phasor
measurements, although significantly less than the value used
in Section VI-B for a priori information.
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TABLE V
PERFORMANCE INDEXES FOR CASE B

| | IEEE 57-bus | IEEE 118-bus | IEEE 300-bus |
Voltage Error Mean Voltage Error Mean Voltage Error Mean
Estimator Metric V] 4 Metric V] § Metric V] 4
SSE 79x103 65x107% 36x10% | 76x10"2 35x10% 37x10%[22x1072 37x107% 89x10°%
PSE 1.5x10% 53x1072 16x107! | 1.8x109 14x1072 11x107! | 27x10° 9.6x10"3 6.5x 1072
HSSE 6.0x1073 33x107% 14x107% | 26x1073 14x107%* 18x107% | 51x1073 1.1x10"% 75x10°°
FSE 60x1073% 33x107* 14x107%* | 26x1073% 14x10* 18x107* | 51x103 11x10"% 7.5x10°°
TABLE VI TABLE VII
DEGREE OF SUBOPTIMALITY FOR CASE B PERFORMANCE INDEXES FOR CASE C
| [ IEEE 57-bus | IEEE 118-bus | IEEE 300-bus | IEEE 57-bus |
Estimator | J(X) psubopt J(X)  psubopt J(X)  psubopt Voltage Error Mean
HSSE 3.162 o 22.401 o 74.660 . Estimator Metric V| §
FSE 3.167 0-167% 22412 0.263% 74.781 0-161% SSE 79x107% 6.5x10°% 3.6x10°%
PSE 82x1072 13x107% 9.7x10°3
FSE 6.0x1073 33x107% 1.4x10~%

The results obtained with the new definition of a priori state
values are summarized in Table VII. By comparing them with
those of Case B presented in Table V, we immediately see that
the metrics associated to the performance of the PSE module
take now significantly lower values. This indicates that the re-
sults provided by PSE for the PMU-unobservable states become
much more accurate. However, due to the difference of vari-
ances (and consequently of weights) with respect to the SCADA
data, the results of the SSE module again prevail at the fusion
stage, so that the FSE results for cases B and C are practically
the same, as one can conclude by comparing Tables V and VII.

D. Assessment of Computational Effort

This subsection provides a preliminary quantitative appraisal
of the estimation fusion strategy computational performance.
The experiments conducted for that purpose are based on some
premises, as follows:

1) All estimators involved in this assessment make use of the

same state estimation software, whose WLS solver is based
on a Givens rotations algorithm capable of processing a
priori state values [20]. Sparsity techniques are employed
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TABLE VIII
COMPUTING TIME (% OF tgssk)
IEEE 57-bus IEEE 118-bus | IEEE 300-bus

Case A | Case B | Case A | Case B Case B
tHsSSE 100.0 100.0 100.0 100.0 100.0
lssE 193 55.4 25.2 42.4 29.8
tpSE 8.8 7.0 32 2.5 04
tFUSION 13.7 37.0 7.1 10.3 1.0
trse 33.0 92.4 324 52.7 30.9

in the implementation, but a “natural ordering” scheme in-
duced by bus numbering is used, instead of a more sophis-
ticated scheme aimed at reducing fill-ins caused by the ro-
tations.

2) The implementation of the fusion stage is based on the
sparse solution of (17), derived in Section V-B of this
paper.

3) For a given test system, the computing times for all FSE
stages are expressed as a percentage of the execution
time required by the conventional hybrid simultaneous
estimator described in Section III-A. In other words, in
each case study the HSSE execution time is taken as the
base to compute the relative computing times for the other
estimators.

4) Since the SCADA- and PMU-based estimators constitute
separate modules and process distinct measurement sets
(see Fig. 2), it is reasonable to consider a parallelization
of the SSE and PSE processes. Accordingly, if tssE, tpse
and trysion denote SSE, PSE and fusion stage execution
times, respectively, then the computing time for the whole
estimation fusion process, trsg, is given by

trse = max(tssg, tpsk) + trusion- (20)

Table VIII presents the computing times for each individual

stage, as well as the time requirements of the whole estimation

fusion process. The following remarks apply:

* For both 57-bus and 118-bus systems, ¢ssg, as a percentage
of tuggE varies from case A to case B, despite the fact that
precisely the same measurement sets are processed by the
SSE estimator in both cases (as a matter of fact, the re-
spective absolute times in seconds are equal). The differ-
ence between the relative values happens because tgssg is
significantly larger in case A than in case B for both net-
works, due to the larger number of phasor measurements
processed in the former case. The same effect explains the
difference in the corresponding values of trision.

e In all cases, tpsg < tssg, what is expected due to the
characteristics of the distinct measurement sets processed
by the SSE and PSE estimators. In addition to dealing with
a larger data set, SSE processes power injection measure-
ments, which give rise to more nonzero entries in the Jaco-
bian matrix rows than phasor measurements.

* Looking now across all test systems and focusing attention
on case B, which is the most realistic considering the cur-
rent stage of PMU penetration in power networks, results in
Table VIII show that relative {psg, values decrease with the
size of the network. Although factors such as nonuniform

1919

TABLE IX
COMPUTING TIME FOR THE FSE STRATEGY (S)
IEEE 57-bus IEEE 118-bus | IEEE 300-bus
Case A | Case B | Case A | Case B Case B
0.056 | 0.046 | 0.235 | 0.230 4.097

mpsg/mssE ratios for the three systems, use of efficient
ordering schemes, etc., should be more carefully evaluated,
the results seem to indicate that the computational per-
formance of the proposed architecture as compared with
the HSSE architecture tends to improve as system size in-
creases.

Finally, Table IX provides the absolute execution times in
seconds required by the FSE strategy, for all previous cases and
all test systems. Although there is still room for many enhance-
ments regarding the implementation of the various estimation
stages, those values indicate that the proposed estimation archi-
tecture is able to provide computing times compatible with real
time application.

VII. CONCLUSION

This paper introduces a multistage state estimator based on
Multisensor Data Fusion theory to optimally combine results
independently obtained from SCADA- and PMU-based estima-
tion modules. The modular architecture of the proposed esti-
mator accommodates the distinct characteristics of both tech-
nologies, and does not impose internal changes to the structure
of existing EMS software. In addition, any valid PSSE algo-
rithm is elegible to be used as the basis for the SCADA and
PMU estimation modules.

Previously developed theoretical principles and methods en-
countered in the rich literature on Multisensor Data Fusion are
reviewed in detail before being applied to the PSSE problem.
Particular attention is then given to issues such as optimality,
computational aspects and observability with respect to phasor
measurements. The paper provides both theoretical arguments
and simulation results to support the conclusion that, under full
SCADA- and PMU-observability conditions and assuming un-
correlation between both classes of measurements, the Fusion
State Estimator provides the same optimal results of a hybrid
simultaneous state estimator. Even when PMU-observability
cannot be ensured, and provided that the accuracy of phasor
measurements is superior as compared to conventional mea-
surements, the fusion approach still provides better results than
conventional SCADA-based estimators. Extensive simulations
conducted with the IEEE 57-bus, 118-bus, and 300-bus bench-
mark systems are used to illustrate the benefits of the proposed
estimation architecture.
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