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Abstract—This paper addresses the probabilistic modeling of
phasor measurement errors in power system state estimation.
Phasor measurement units (PMUs) provide the magnitude and
phase angle of monitored synchrophasors. However, compu-
tational efficiency prescribes their conversion to rectangular
components prior to processing by a weighted least-squares
state estimator. Since conventional estimators treat data in a
scalar basis, the correlation between measurement components
has to be neglected, thus affecting the statistical properties of
the weighted least-squares solution and the quality of the final
estimates. To circumvent that drawback, a blocking scheme
applied in connection with orthogonal estimators is proposed to
allow the simultaneous processing of phasor measurements’ real
and imaginary parts. As a consequence, correlations between the
rectangular components of measurement errors, as well as their
influence on the final estimates, can be fully taken into account.

The paper describes the principles and implementation of the
blocked orthogonal solution and its insertion into an architecture
for combining SCADA and PMU estimates. Simulation results
based on IEEE benchmarks systems are used to illustrate the
proposed approach.

Index Terms—Probabilistic modeling of measurement errors,
synchronized phasor measurements, Power system state estima-
tion, Givens rotations.

I. I NTRODUCTION

Power Systems State Estimation (PSSE) is the basic tool
for power system independent operators. The state estimator
processes redundant noisy measurements, is able to efficiently
detect bad data and returns a snapshot of the system operating
point. Traditionally, measurements processed by the state
estimator are obtained from the supervisory control and data
acquisition (SCADA) system, which scans remote terminal
units (RTU) located at the substation level. Recently, the
advent of the synchronized phasor measurement technology
has made it possible to directly measure electric current
and voltage phasors, something previously unattainable with
SCADA. Phasor and SCADA measurements exhibit some
distinct characteristics [1]. While SCADA measurement scans
take place at about every 5 seconds, PMU sampling rates are
in the range of tenths of samples per second. In addition, the
latter tend to be more accurate. When placed at strategic points
of the network, PMUs are also able improve observability [2],
as well as to enhance bad data detection [3].

Among the available alternatives to incorporate phasor
measurements into the state estimation process, a particularly
attractive one from a practical perspective consists in adding an
additional estimation module to the SCADA-based estimator,
so that the distinct types of measurements are processed
by distinct estimation stages [4]–[6]. The first stage com-
prises a conventional state estimator, which processes SCADA
measurements only. The second stage receives the estimates
provided by the first stage and uses them asa priori state
information for the processing of the PMU measurements. This
approach presents the advantage of maintaining unchanged

all the structure already in use by power operators/utilities.
Another benefit is that the estimator in the second stage can
be made linear, since it processes only complex voltages and
currents whose relationships with the state variables are linear
when rectangular coordinates are used [4].

However, previous attempts to implement such estimation
architecture require strong approximations concerning the sta-
tistical properties of the measurement errors, namely, errors
on the real and imaginary parts of a given quantity have to be
assumed as mutually uncorrelated. This affects the statistical
properties of the weighted least squares solution, as well as
the quality of the final estimates.

This paper proposes an enhanced alternative to incorporat-
ing PMU measurements into the post-processing stage which
circumvents the need of adopting the abovementioned uncorre-
latedness assumption. The proposed approach takes advantage
of the linear measurement model provided by formulating the
problem in rectangular coordinates, and makes use of a gen-
eralized blocked form of Givens orthogonal rotations which
has been especially developed for this particular application.
The blocked form of the orthogonal rotations make it possible
to jointly process the real and imaginary parts of measured
quantities, so that the correlation between them can be fully
taken into account. It also exhibits the same property in regard
to thea priori information imported from the first estimation
stage, which can thus be also considered correlated and, in
addition, is processed with no extra computation cost by the
orthogonal estimator. Therefore, the proposed approach can
be seen as a step forward in terms of preserving the statistical
properties of the estimation problem.

This paper is organized as follows. Section II reviews the
basic principles of PSSE. Its solution through scalar Givens
rotations is revisited in Section III, where their generalization
towards the blocked form is also introduced. Section IV shows
how the blocked rotations are embedded into the proposed
hybrid state estimation architecture. Results of numerical
simulations are presented in Section V, which is then followed
by the concluding remarks.

II. STATE ESTIMATION BACKGROUND

A. Conventional State Estimation

Conventional state estimation is based on SCADA measure-
ments: voltage and current magnitudes, active and reactive
injections, active and reactive power flows. Considering an
n bus system withm measurements, the measurement model
is given by

z = h(x) + η (1)

wherez is the m × 1 measurements vector,x is the n × 1

power system state vector,h is the m × 1 set of nonlinear
functions relating the measurement to the states andη is
the m × 1 vector of random measurement errors, whosei-th
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component has variance equal toσ2
i . The measurement error

vector is assumed as Gaussian distributed with zero mean, that
is,

E{η} = 0 (2)

Errors in SCADA measurements are usually assumed uncorre-
lated, which implies that their covariance matrixR is reduced
to its diagonal entries. Those are the measurement variances
σ2
i , obtained from the accuracy properties of the metering

devices. Thus,

E{ηηt} = R = diag{σ2
1 , ..., σ

2
m} (3)

The state estimation problem is usually formulated as a
weighted least squares (WLS) problem, so that the weighted
sum of squared residuals is minimized. The objective function
of the WLS problem is given by

MinJ(x̂) =
1

2
(z− h(x̂))tR−1(z− h(x̂)) (4)

The conventional solution of this optimization problem is it-
eratively obtained through the Gauss-Newton method, starting
at a given pointxk. Incremental corrections toxk are given
by the solution of theNormal Equation[7]–[9]:

(HtR−1H)∆x = HtR−1∆z (5)

whereH is the Jacobian matrix of ofh(x), computed atxk

and ∆z = z − h(xk). Convergence is reached when∆x

becomes smaller than a given tolerance. Assuming thatx̂ is
the final state estimate, the covariance matrix of the estimation
erros is given by

Cov(x̂− x) = Cx = (HtR−1H)−1 (6)

B. A priori State Estimation

Whenever some prior knowledge is available about the state
variables, it can be embedded in the estimation process asa
priori information. This can be accomplished by adding a new
term to the objective function, given by

1

2
(x̂− x̄)tP−1(x̂− x̄) (7)

where x̄ is then × 1 random vector ofa priori information
on the state variables andP is its covariance matrix. If
the elements errors of̄x are assumed uncorrelated, then
P = diag{σ̄2

1 , ..., σ̄
2
n}, whereσ̄2

i is the variance representing
the uncertainty on the valuēxi. The minimization of the
augmented objective function obtained by takinga priori
state information into account leads to the extended normal
equation:

(HtR−1H+P−1)∆x = HtR−1∆z+P−1∆x̄ (8)

where∆x̄ = x̄− xk. Whena priori state information is con-
sidered, the problem is referred to asA priori State Information
(APSI) State Estimation. As shown in the sequel,a priori
information can be accommodated within the weighted least-
squares framework at no extra computational cost when the
problem is solved through the three-multiplier (3M) version
of orthogonal Givens rotations.

III. STATE ESTIMATION VIA 3M GIVENS ROTATIONS

Orthogonal techniques to solve the least square problem
have been introduced in the past to improve the numerical
robustness of least-squares problems. This section describes
a sequential orthogonal method based on the three-multiplier
version of Givens rotations, first applied to state estimation in
[10].

A. Scalar form of Givens rotations

Consider the linearized version of the least-squares prob-
lem (4) with measurement modelz = Hx + η. Assume
that an initial measurement vectorz0 is selected which has
the same size of the state vector, so that the corresponding
observation matrixH0 is square. In addition, assume also
that a new measurementz1, related to the state variables as
z1 = ht

1x+η1, is to be processed. The rows ofH0 and ht
1

are scaled by factorsR−1/2
0 andw1/2, respectively. Then a

sequence of plane (Givens) rotationsQ can be applied to the
scaled rows of the new observation matrix (augmented with
the corresponding measurements) so that [10]:

Q

( [

R
−

1

2

0

w
1

2

]

[

H0 z0
ht
1 z1

]

)

=

[

U c

0 e

]

(9)

whereU is a n × n upper triangular matrix,c is a n × 1

vector,0 is a 1 × n null vector ande is an scalar. Assuming
observability [8], the estimated state vectorx̂ based on the
processed measurements can be obtained by simply solving
the following triangular system of equations:

U x̂ = c (10)

Furthermore, the weighted sum of the squares residuals is
a by-product of the rotations, and is determined frome.
Since matrixQ which stores the sequence of rotations is
orthogonal, this method to solve WLS problems is superior
to the conventional normal equation approach in terms of
numerical robustness [10].

B. Three Multiplier (3M) scalar Givens rotations

The three-multiplier (3M) version of Givens rotations is
based on the factorization of matrixU as [11], [12]

U = D
1

2 Ū (11)

whereD is diagonal and̄U is a unit upper triangular matrix.
The artifice of scalingU makes this scheme computationally
superior to the original Givens method, because it eliminates
square roots calculations implicit in the original rotations (in
practiceD

1

2 is not required, onlyD is actually calculated).
Three-multiplier Givens rotations are the basis for a recursive
method which processes each row of the Jacobian matrix
(augmented by the corresponding entry of∆z) at a time.
It also makes it possible to adda priori information and to
obtain the weighted sum of squared residuals with no extra
computational cost.

To illustrate the3M Givens rotations, consider that a new
row vector p, which corresponds to a row of[H | ∆z],
undergoes rotations with a row vectoru from the matrixU:

u = [ 0 · · · 0
√
d · · ·

√
dūk · · ·

√
dūn+1

]

p = [ 0 · · · 0
√
wpi · · · √

wpk · · · √
wpn+1

] (12)
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Both vectors have already been scaled according to (11), the
scaling factors being

√
d and

√
w, respectively. After a single

rotation, thei− th of p is zeroed out and the row vectors take
the form

u′ = [ 0 · · · 0
√
d′ · · ·

√
d′ū′

k
· · ·

√
d′ū′

n+1

]

p′ = [ 0 · · · 0 0 · · ·
√
w′p′k · · ·

√
w′pn+1

] (13)

Next, elementary rotations are sequentially performed in
order to annihilate all non-zero element ofp. This process
introduces changes inU, c ande after each rotation.

As far as PSSE is concerned, one the most important fea-
tures of the scaling mechanism is that it allows the weighting
of each new measurement with no extra calculation. In fact,
proper weighting of measurement∆zi is achieved when factor
wi is given by

wi =
1

σ2
i

(14)

whereσ2
i is the variance of the measurementzi.

In regard to factordi, its value at the initialization of the
rotation process can be seen as the initial weight for state
variable i before any measurement is processed. In other
words,d(0)i corresponds to the weighting factor of thea priori
information available about the states. Therefore

d
(0)
i =

1

σ̄2
i

(15)

where σ̄2
j is the variance of thea priori information on the

state variablej.
If no a priori information is available about the states, then

d
(0)
i = 0. From (11), this implies thatU is initially a null

triangular matrix. If, on the contrary, there is prior information
on the states, the 3M Givens rotations scheme is initializedas
follows:

• di as in equation (15);
• vectorc as the availablea priori information, that is,

c = x̄priori. (16)

To summarize, the 3M Givens rotations method can easily
considera priori information in the very initialization stage
of the estimation process, so that no extra computational cost
is incurred.

C. Block form of Givens rotations

The 3M form of Givens rotations described in the previous
section considers ascalar weighting scheme in which the
weight assigned to each measurement depends solely on its
variance. This implicitly means that possible cross-correlations
between measurements must be neglected. Although accept-
able in certain applications, such as conventional SCADA-
based state estimation, such assumption implies a strong sta-
tistical simplification for others. Such is the case when voltage
and current phasor measurements converted to rectangular
form are to be processed by the state estimator, since the
real and imaginary parts of such phasors tend to be strongly
correlated.

To circumvent that limitation, an extendedblocked formof
the 3M Givens rotations has been developed in connection
with this research work in order to consider the covariance
between two distinct measurements. The proposed extension
enables the processing of two measurements at a time, which

can thus be seen as statistically coupled together, since their
weighting factor becomes the inverse of the2× 2 covariance
matrix of the paired observations. To outline the procedure,
consider that measurements are now organized in pairs and
the errors for each pair are assumedcorrelated. This implies
that the covariance matrixR is block diagonal, that is,

E(ηηt) = R̃ =



















σ2
1 c12

c21 σ2
2

σ2
3 c34

c43 σ2
4

.. .
. ..

.. .
. ..



















(17)

where σ2
i is the variance of measurementi of the pair

and cij = cji stands for the covariance between the pair
components.

Equation (9), which prescribes how new measurements are
processed by the 3M Givens rotations, is then generalized.
Accordingly, vectorz1 is now composed by a2 × 1 pair of
new measurements, which are related to the states by the2×n
matrixH1. The proposed blocked form of the rotations is then
applied to matrix[H0

t | Ht
1]

t augmented by vector[z0t | zt1]t
(both previously scaled byR−

1

2 andW
1

2 ) in order to obtain
an upper triangular linear system of equations. IfQ̃ represents
the matrix that stores the rotations in the new blocked form,
we have:

Q̃

( [

R
−

1

2

0

W
1

2

]

[

H0 z0
H1 z1

]

)

=

[

Ũ c̃

0 ẽ

]

(18)

where c̃ is a n × 2 vector,0 is a 2 × n null matrix, ẽ is a
2 × 2 matrix andŨ is a n × n upper triangular matrix with
2 × 2 block identities on its main diagonal.

The estimated state vector̂x is obtain by solving the
triangular system of equations by back substitution.

Ũ x̂ = c̃1 (19)

wherec̃1 is the first column of̃c.
The block form of the 3M Givens rotations is based on the

same factorization as in (11), but nowD is block diagonal,
that is,

U =













D
1

2

1

D
1

2

2
. ..

D
1

2

n













×













I2×2 ũ12 ũ13 · · · ũ1n

I2×2 ũ23 · · · ũ2n

I2×2 · · · ũ3n

. . .
...

I2×2













(20)

whereD
1

2

i and ũjk are 2 × 2 matrices andI2×2 is a 2 × 2

identity matrix.
Suppose that a2 × n matrix p̃, which correspond to a

pair of statistically coupled measurements in[H | z], should
undergo rotations with a2 × n submatrixũ of Ũ in order to
zero out blockp̃i.

ũ = [ 0 · · · 0 D
1

2 · · · D
1

2 ũk · · · D
1

2 ũn+1

]

p̃ = [ 0 · · · 0 W
1

2 p̃i · · · W
1

2 p̃k · · · W
1

2 p̃n+1

] (21)

After a single block rotation, the row vectors take the form

ũ′ = [ 0 · · · 0 D′
1

2 · · · D′
1

2 ũ′

k
· · · D′

1

2 ũ′
n+1

]

p̃′ = [ 0 · · · 0 0 · · · W′
1

2 p̃′

k
· · · W′

1

2 p̃′
n+1

] (22)

In analogy with the scalar form, the sequence of block
rotations successively annihilates all nonzero blocks ofp̃. In
this process, matrices̃U, c̃ and ẽ are also updated.
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Although the weighting mechanism employed in the
blocked version of Givens rotations is analogous to its scalar
form, it exhibits the distinctive advantage of enabling the
consideration of the statistical correlation involving each new
pair of measurements being processed. This is accomplished
by defining the2× 2 measurement weighting factor as:

W =

[

σ2
Re cRe,Im

cIm,Re σ2
Im

]−1

(23)

whereσ2
Re andσ2

Im are the variances of the real and imag-
inary parts of the phasor measurement being processed and
cRe,Im = cIm,Re are the corresponding covariance.

Similarly, the correlation between pairs of voltage compo-
nents in thea priori state information vector can be easily
taken into account. To achieve this, the generalized weighting
factor D of the block triangular matrix in (20) should be
initialized as:

D(0) =

[

σ̄2
Re c̄Re,Im

c̄Im,Re σ̄2
Im

]−1

(24)

where entries of matrixD(0) are similar to those in (23) but
refer to a priori state information. Vector̃c of (18) should
contain the a priori state information values ordered as a
sequence of bus voltage real and imaginary parts, that is:

c̃1 = x̄priori (25)

IV. ENHANCED TWO-STAGE PSSE

The hybrid state estimator employed in this paper builds
upon the architecture proposed in [5], which is depicted in
Fig. 1. Its first estimation stage is simply a conventional
state estimator based on SCADA measurements, with no
extra restrictions imposed. The output of this module, which
comprises the estimated state vector and the corresponding
estimation error covariance matrix (6), is treated asa priori in-
formation by the second estimation stage. The latter processes
phasor measurements only, and consists of an orthogonal
estimator based on 3MBlockedGivens rotations. As shown
in Subsection III-B, that version of Givens rotations is able to
processa priori information without any extra computational
cost. A particular attractive feature of such strategy is that it
maintains intact the structure already in place with existing
SCADA-based state estimators.

A. Improvements to phasor measurement processing

Although relying in the previously proposed architecture de-
scribed in Fig. 1, two relevant enhancements to the estimation
process are introduced in this paper, both of them related to
the second estimation stage. They are:

1) The relationships between phasor measurements and
state variables is converted to rectangular coordinates
[4], so that the resulting measurement model becomes
linear. As a consequence, the solution of the estimation
problem can be obtained through a direct, non-iterative
algorithm, with obvious computational advantages;

2) The orthogonal algorithm is replaced by theblock form
of 3M Givens rotations described in Subsection III-C.
As described in the latter, this enables the estimator to
take into account the correlation between the real and
imaginary parts of both PMU measurements anda priori
information, thus preserving the statistical properties of
the solution.

Since the properties connected to item 2 above have been
discussed in Subsection III-C, in the remaining of this section
attention is focused on the issues related to item 1.

1st stage

SCADA

measurements

A priori information 

PSSE - Block Givens Rotations

PMU

measurements

EMS

State Estimator

2st stage

zPMU	,	RPMU

zSCADA	,	RSCADA

priori	,	Cx

Fig. 1. Two-stage estimation strategy

B. PSSE in rectangular coordinates considering PMU mea-
surements

The second stage processes only PMU measurements in
rectangular coordinates and embeds a priori information ob-
tained from the first stage. This choice of coordinates system
improves computational efficiency, since real and imaginary
parts of voltage and currents are linearly related to the states.
To outline this, letypq be the series admittance of the branch
connecting busesp and q andyp0 be the shunt admittance at
busp, so that:

ypq = gpq + jbpq

yp0 = jbp0
(26)

Now consider a set of two distinct PMU measurements
taken at busp, namely, phasor currentIpq and phasor voltage
Vp. The corresponding measurement model takes the form:








V r
p

V i
p

Irpq
Iipq









=







1
1

gpq (bpq − bp0) −gpq bpq
(bpq + bp0) gpq −bpq −gpq















xr
p

xi
p

xr
q

xi
q









+







η1
η2
η3
η4






(27)

where superscriptr and i stand for real and imaginary parts,
respectively.

Since phasor measurements are physically taken in polar
coordinates, a change of coordinates is needed in order to
employ (27). This involves two steps. The first one is simply
the conversion of the measured values|zi|∠θi (voltage or
current) to rectangular form:

{

zri = |zi|cos(θi)
zii = |zi|sin(θi)

(28)

The corresponding error covariance matrix has also to
be converted to the new coordinates. Assuming thatzi and
θi measurement errors are independent, one clearly sees
from (28) that such a step involves two nonlinear functions
of two independent random variables [13]. Equations (28) can
be linearized, yielding the following relationships between the
incremental measurement components in polar and rectangular
coordinates:

[

∆zri
∆zii

]

=









∂zri
∂|zi|

∂zri
∂θi

∂zii
∂|zi|

∂zii
∂θi









[

∆|zi|
∆θi

]

(29)
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Defining the transformation matrixM as

M(|zi|, θi) =









∂zri
∂|zi|

∂zri
∂θi

∂zii
∂|zi|

∂zii
∂θi









=





cos(θi) −|zi|sin(θi)

sin(θi) |zi|cos(θi)



, (30)

the relationship between the covariance matrices in rectangular
and polar forms is given by [13]:

Rrect = MRpolM
t (31)

Equation (31) shows that, even assuming statistical indepen-
dence between measurement polar components,Rrect will be
a full 2×2 block. When a set of phasor measurements are con-
sidered, this leads to the block diagonal structure represented
in (17). Another important matrix structure characteristic can
observed fromH in (27). When states and measurements are
ordered as in (27), a2× 2 block structure results, so that the
measurement model can be rewritten as:

[

Vp

Ipq

]

=

[

I2×2

B1 B2

] [

xp

xq

]

+

[

η1,2
η3,4

]

(32)

The last issue that remains to be discussed is the processing
of the results from the first stage asa priori information by the
second stage. Those results are usually in polar coordinates,
so that the same transformations given by (28) and (31) apply.
Accordingly, the SCADA-based estimates are converted into
rectangular form and compose thea priori state information
vector in (25) to be processed next by the second estimation
module. In addition, the error covariance matrix of the first
stage in rectangular coordinates is given by:

Cx,rect = MCx,polarM
t (33)

Notice that Cx,polar is generally a full matrix. In order
to accommodateCx,rect into the block Givens rotations
framework, the assumption is made that the cross correlation
between state variables associated to two distinct buses can be
neglected when compared with the2×2 covariance blocks of
each bus complex voltage. This results in a block submatrix
C̃x,rect whose structure is similar to that of matrix̃R in (17).
Considering the developments in Subsection III-C, it is easy
to conclude that the2× 2 blocks ofC̃x,rect define the initial
factorD(0) of (24), which weighs the block triangular matrix
of the generalized rotations.

Finally, it is important to notice that it is the choice of
the block form of Givens rotations that makes it possible to
consider the off diagonal entries ofCx,rect, thus preserving
important statistical properties of the SCADA-based estimates
provided by the first estimation module.

V. SIMULATION RESULTS

In order to evaluate the gains in accuracy provided by
the proposed strategy based on blocked 3M Givens rotations,
several simulations have been carried out on theIEEE 14-bus
and 30-bus test systems. The starting point for all simulations
is a power flow study which provides the “true” value for the
state and network variables. Measurements are generated by
adding random Gaussian distributed errors with zero mean and
standard deviations which are a function of the specified meter
accuracies. Measurement errors are not allowed to exceed±3σ
in order to avoid adding bad data to the measurement set. It is
assumed that the accuracy level for SCADA measurements is

1% and for PMU measurements is 0.1%, for both magnitude
and angle. An orthogonal scalar state estimator is employed
to process the SCADA measurements, although there is no
restriction concerning the algorithm used at this stage. The
metering schemes are such that the test systems are fully
observable with respect to SCADA measurements. The second
stage processes phasor measurements from a number of PMU
units placed in the system. It is assumed that each PMU
measures the complex voltage at the bus where it is installed
and the complex currents on all branches incident to it. The
PMU measurement sets themselves do not necessarily ensure
network observability. It is assumed that the voltage phasor
is monitored at the reference bus, which is bus 1 for both
networks.

For both test systems, fifty simulations are performed, each
of them based on different measurement values obtained by
using random seeds to generate the measurement errors. Each
measurement set is then submitted to both the scalar and
blocked versions of the 3M GivensAPSI estimator.

The metering scheme used for the simulations with the
IEEE 14-bus system is detailed in the one-line diagram in
Fig. 2. A similar diagram is not shown for the 30-bus test
system due to space limitations. Table I specifies the number
of measurements of each type which compose the metering
scheme, for each test system.

Fig. 3 present the mean absolute errors for both voltage
magnitude and angle at each bus for the 14-bus test system.
Each point plotted in both figures is obtained by applying the
formula:

x̄ =

∑nS

k=1

∣

∣x̂method
k − xtrue

k

∣

∣

nS
(34)

where x stands for either the voltage magnitudeVi or the
voltage angleθi at bus i; nS is the number of performed
simulations (equal to50 in this case); superscript“true” refers
to values obtained from the power flow study, and superscript
“method” refers to values provided by either the scalar or the
blocked version of the 3M GivensAPSIestimator. Results for
the 30-bus network are also obtained (34) and are shown in
Fig. 4.
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Fig. 2. Metering scheme forIEEE 14-bus system

Results in Fig. 3 and 4 clearly show that the improved
modeling of the statistical properties provided by the blocked
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TABLE I
METERING SCHEME COMPOSITION FOR BOTH TEST SYSTEMS

SCADA PMU

Meas. Type P Q |V | t u V̇ İ

14-BUS 6 6 8 10 9 6 19
30-BUS 15 15 14 27 27 10 19

version of the 3M Givens rotations-based APSI estimator
reflects itself on the accuracy of the estimates. In all plots, the
mean absolute errors computed for the proposed method are
consistently smaller than those corresponding to an algorithm
also based on the 3M Givens rotations, but employing a scalar
measurement weighting scheme.
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Fig. 3. Mean absolute errors of (a) voltage magnitudes and (b)voltage angles
for the IEEE 14-bus system

VI. CONCLUSIONS

This paper proposes an alternative method to incorporate
phasor measurements to power system state estimation. It is
based on a two-stage process which imposes no restriction
to existing SCADA-based estimators. The results provided by
the latter are embedded into the second stage asa priori
information and then combined with the available phasor
measurements. In the second stage, all data is processed in
rectangular coordinates, in order to benefit from the resulting
linear relationships between measurements and states. To
ensure that such a change of coordinates will not adversely
affect the statistical properties of the solution, a novel measure-
ment weighting blocked scheme based on Givens orthogonal
rotations is proposed in this paper. Extensive simulation results
carried out with two test systems confirm that the proposed
method provides more accurate estimates than conventional
scalar measurement weighting schemes.

Additional topics related to the proposed estimator deserve
further research efforts, such as a more careful appraisal of its
computational requirements and the impact of the enhanced
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Fig. 4. Mean absolute errors of (a) voltage magnitudes and (b)voltage angles
for the IEEE 30-bus system

statistical modeling provided by the novel estimation archi-
tecture on bad data processing.
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