Fontes Renováveis Não-Convencionais

Parte II

Prof. Antonio Simões Costa

Prof. Tom Overbye, U. of Illinois

Power in the Wind

- Consider the kinetic energy of a "packet" of air with mass *m* moving at velocity *v* $KE = \frac{1}{2}mv^{2}$
- Divide by time and get power Power through area $A = \frac{1}{2} \left(\frac{m \text{ passing though } A}{t} \right) v^2$
- The mass flow rate is (ρ is air density) $\dot{m} = \frac{m \text{ passing though } A}{t} = \rho A v$

Power in the Wind

Combining previous equations,

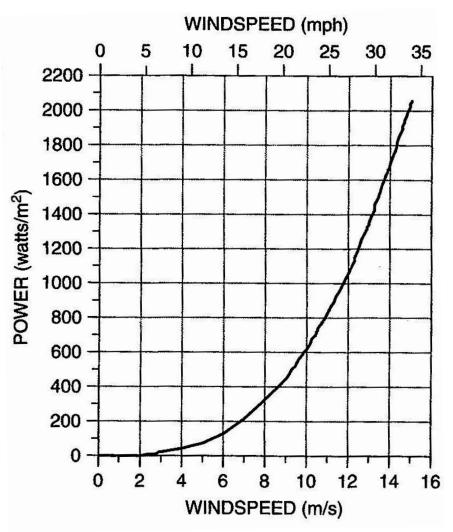
Power through area
$$A = \frac{1}{2} (\rho A v) v^2$$

 $P_w = \frac{1}{2} \rho A v^3$ (6.4) Power in the wind

 P_W (Watts) = power in the wind ρ (kg/m³)= air density (1.225kg/m³ at 15°C and 1 atm) A (m²)= the cross-sectional area that wind passes through v (m/s)= wind speed normal to A (1 m/s = 2.237 mph) (3,6 km/h)

Power in the Wind (for reference solar is about 600 w/m^2 in summer)

- <u>Power increases with</u> the cube of wind speed
- Doubling the wind speed increases the power by eight
- Energy in 1 hour of 20 mph winds is the same as energy in 8 hours of 10 mph winds
- Nonlinear, so we cannot use average wind speed



Power in the Wind

$$\mathbf{P}_{W} = \frac{1}{2} \rho \mathbf{A} v^{3}$$

- Power in the wind is also proportional to A
- For a conventional HAWT, $A = (\pi/4)D^2$, so <u>wind</u> power is proportional to the blade diameter squared
- <u>Cost</u> is somewhat <u>proportional to blade diameter</u>
- This explains why <u>larger wind turbines are more</u> <u>cost effective</u> (plus, as we shall see, <u>because they</u> <u>are higher, the winds are stronger</u>)

Air Density for Different Temperatures and Pressures

$$\rho = \frac{P \cdot M.W. \cdot 10^{-3}}{RT}$$

- *P* = absolute pressure (atm)
- M.W. = molecular weight of air (g/mol) = 28.97 g/mol
- T = absolute temperature (K)
- R = ideal gas constant = $8.2056 \cdot 10^{-5} \cdot m^3 \cdot atm \cdot K^{-1} \cdot mol^{-1}$
- <u>Air density is greater at lower temperatures</u>
 - For example, in comparing 90° F (305 K) to 10° F 265.3 K), ratio is about 1.15 (32° C) (-12° C)

Air Density Temperature and Altitude Impacts

• Variation in density with respect to <u>temperature and</u> <u>altitude</u> is given by

$$\rho = \frac{353.1 \exp(-0.0342 \, z/T)}{T} \quad \text{kg/m}^3$$

where T is in kelvins (K) and z is in meters above sea level

- With <u>z=0</u>, T=273.16+<u>15</u> then $\rho = 1.225 \text{kg/m}^3$
 - With <u>z=200</u>, T= 273.16+<u>35</u>, then $\rho = \frac{1.225 \text{ kg/m}^3}{1.120} \text{ kg/m}^3$ (about 91% of sea level, 15 degree C value)

Impact of Elevation and Earth's Roughness on Windspeed

- Since power increases with the cube of wind speed, we can expect a <u>significant economic impact from</u> <u>even a moderate increase in wind speed</u>
- There is a lot of friction in the first few hundred meters above ground – <u>smooth surfaces (like water)</u> <u>are better</u>
- Wind speeds are greater at higher elevations <u>tall</u> <u>towers are better</u>
- Forests and buildings slow the wind down a lot

Characterization of Elevation and Earth's Roughness on Wind Speed

$$\frac{v}{v_0} = \left(\frac{H}{H_0}\right)^a$$

- α = friction coefficient given in Table 6.3
- v = wind speed at height H
- $v_0 =$ wind speed at height H_0 (H_0 is usually 10 m)
- Typical value of α in open terrain is 1/7 = 0.143
- For a large city, $\alpha = 0.4$; for small town, $\alpha = 0.3$, for high crops, , $\alpha = 0.2$, for calm water or hard ground, $\alpha = 0.1$

TABLE 6.3 Friction Coefficient for Various Terrain Characteristics

Terrain Characteristics	Friction Coefficient α
Smooth hard ground, calm water Tall grass on level ground High crops, hedges and shrubs Wooded countryside, many trees Small town with trees and shrubs	0.10 0.15 0.20 0.25 0.30
Large city with tall buildings	0.40

Impact of Elevation and Earth's Roughness on Power in the Wind

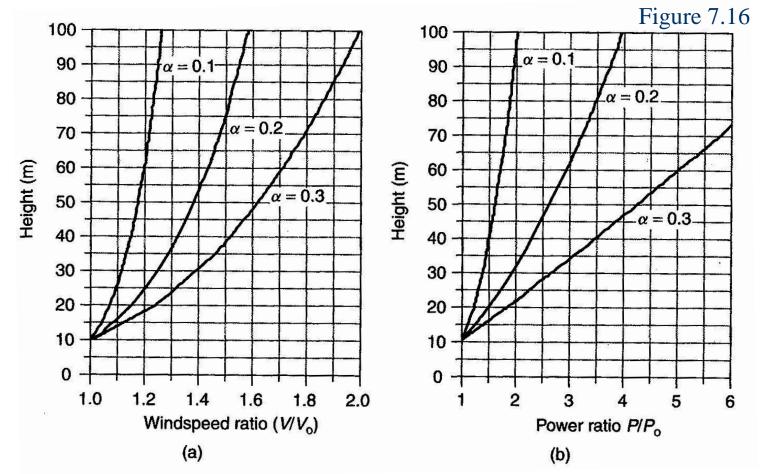
• Combining earlier equations we get

$$\frac{P_{\mathsf{W}}}{P_{\mathsf{W}_0}} = \left(\frac{v}{v_0}\right)^3 = \left(\frac{H}{H_0}\right)^{3a}$$

• The other constants in the power in the wind equation are the same, so they just cancel:

$$\frac{P_{\rm W}}{P_{\rm W_0}} = \frac{\frac{1}{2}\rho Av^3}{\frac{1}{2}\rho Av_0^3}$$

Impact of Elevation and Earth's Roughness on Windspeed



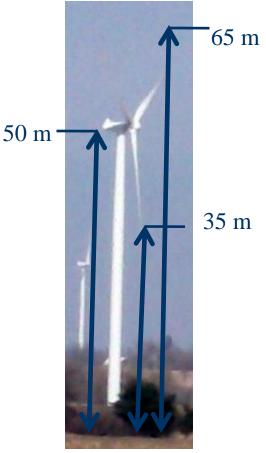
For a small town, windspeed at 100 m is twice that at 10 m Areas with smoother surfaces have less variation with height

Example Rotor Stress

- Wind turbine with hub at 50-m and a 30-m diameter rotor, $\alpha = 0.2$
- Find the <u>ratio of power in</u> the wind at highest point to <u>lowest point</u>

$$\frac{P}{P_0} = \left(\frac{65}{35}\right)^{3 \cdot 0.2} = 1.45$$

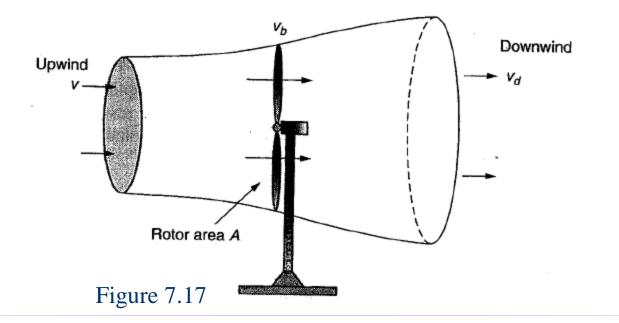
• Power in the wind at the top of the blades is 45% higher!



14

- Two extreme cases, and neither makes sense-
 - Downwind velocity is zero turbine extracted all of the power
 - Downwind velocity is the same as the upwind velocity turbine extracted no power
- Albert Betz 1919 There must be some <u>ideal</u> <u>slowing of the wind</u> so that the <u>turbine extracts the</u> <u>maximum power</u>

- Constraint on the ability of a wind turbine to convert kinetic energy in the wind into mechanical power
- Think about wind passing though a turbine- it slows down and the pressure is reduced so it expands



Power Extracted by The Blades

$$P_{b} = \frac{1}{2} \dot{m} \left(v^{2} - v_{d}^{2} \right)$$
(7.21)

- $\dot{m} = \text{mass flow rate of air within stream tube}$
- v = upwind undisturbed wind speed
- v_d = downwind wind speed
- From the difference in kinetic energy between upwind and downwind air flows

Determining Mass Flow Rate

- Easiest to determine at the plane of the rotor because we know the cross sectional area A
- Then, the mass flow rate is

$$\dot{m} = \rho A v_b \tag{7.22}$$

 $v_b^{}$ = windspeed through the plane of rotor blades

• Assume the velocity through the rotor v_b is the average of upwind velocity v and downwind velocity v_d

$$v_b = \frac{v + v_d}{2} \implies \dot{m} = \rho A \left(\frac{v + v_d}{2} \right)$$

Power Extracted by the Blades

• Then

$$P_{b} = \frac{1}{2} \rho A \left(\frac{v + v_{d}}{2} \right) \left(v^{2} - v_{d}^{2} \right)$$
(7.23)

• Define

$$\lambda = \frac{v_d}{v}$$
, will be less than 1.0 (7.24)

• Then substituting for v_d to get the power extracted

$$P_{b} = \frac{1}{2} \rho A \left(\frac{\nu + \lambda \nu}{2} \right) \left(\nu^{2} - \lambda^{2} \nu^{2} \right)$$
(7.25)

Power Extracted by the Blades

$$P_{b} = \frac{1}{2} \rho A \left(\frac{\nu + \lambda \nu}{2} \right) \left(\nu^{2} - \lambda^{2} \nu^{2} \right)$$

$$\left(\frac{\nu + \lambda \nu}{2} \right) \left(\nu^{2} - \lambda^{2} \nu^{2} \right) = \frac{\nu^{3}}{2} - \frac{\lambda^{2} \nu^{3}}{2} + \frac{\lambda \nu^{3}}{2} - \frac{\lambda^{3} \nu^{3}}{2} \right)$$

$$= \frac{\nu^{3}}{2} \left[(1 + \lambda) - \lambda^{2} (1 + \lambda) \right]$$

$$= \frac{\nu^{3}}{2} \left[(1 + \lambda) (1 - \lambda^{2}) \right]$$

$$P_{b} = \frac{1}{2} \rho A \nu^{3} \cdot \frac{1}{2} \left[(1 + \lambda) (1 - \lambda^{2}) \right]$$

$$P_{w} = \text{Power in the wind} \qquad C_{P} = \text{Rotor efficiency}$$

20

- Find the wind speed ratio λ that maximizes the <u>rotor</u> <u>efficiency</u>, C_P
- From the previous slide

$$C_{P} = \frac{1}{2} \left[(1+\lambda) (1-\lambda^{2}) \right] = \frac{1}{2} - \frac{\lambda^{2}}{2} + \frac{\lambda}{2} - \frac{\lambda^{3}}{2}$$

Set the derivative of rotor efficiency to zero and solve for λ :

$$\frac{\partial C_P}{\partial \lambda} = -2\lambda + 1 - 3\lambda^2 = 0$$

$$\frac{\partial C_P}{\partial \lambda} = 3\lambda^2 + 2\lambda - 1 = 0$$

$$\frac{\partial C_P}{\partial \lambda} = (3\lambda - 1)(\lambda + 1) = 0$$

$$\lambda = \frac{1}{3}$$

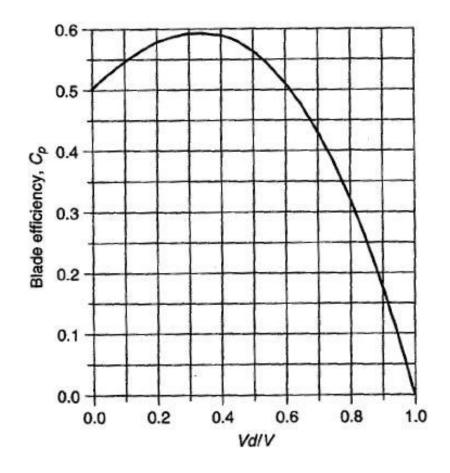
maximizes rotor efficiency

• Plug the optimal value for λ back into C_P to find the maximum rotor efficiency:

$$C_{P} = \frac{1}{2} \left[\left(1 + \frac{1}{3} \right) \left(1 - \frac{1}{3^{2}} \right) \right] = \frac{16}{27} = 59.3\%$$
(7.29)

- The <u>maximum efficiency of 59.3%</u> occurs when air is slowed to 1/3 of its upstream rate
- Called the "<u>Betz efficiency</u>" or "<u>Betz' law</u>"

Rotor efficiency C_P vs. wind speed ratio λ



Tip-Speed Ratio (TSR)

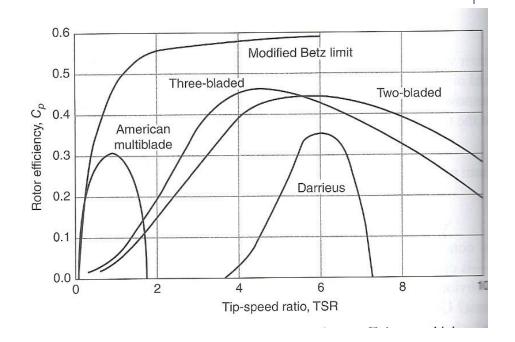
- Efficiency is a function of how fast the rotor turns
- <u>Tip-Speed Ratio</u> (<u>TSR</u>) is the speed of the outer tip of the blade divided by wind speed

 $\operatorname{Tip-Speed-Ratio}_{(\text{ou Velocidade Específica})} = \frac{\operatorname{Rotor tip speed}}{\operatorname{Wind speed}} = \frac{\operatorname{rpm} \times \pi D}{60v} \quad (7.30)$

- D = rotor diameter (m)
- v = upwind undisturbed wind speed (m/s)
- rpm = rotor speed, (revolutions/min)
- One meter per second = 2.24 miles per hour

Tip-Speed Ratio (TSR)

- TSR for various rotor types
- If blade turns too slow then wind passes through without hitting blade; too fast results in turbulence
- Rotors with fewer blades reach their maximum efficiency at higher tip-speed ratios



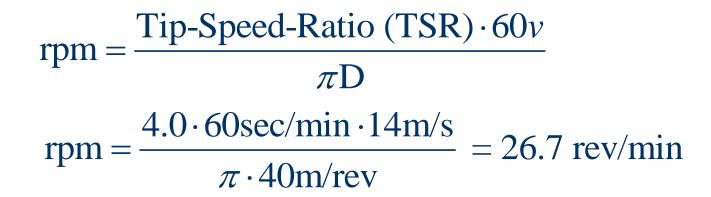
A higher TSR is needed when there are fewer blades

Example

- 40-m wind turbine, three-blades, 600 kW, wind speed is 14 m/s, air density is 1.225 kg/m³
- a. Find the rpm of the rotor if it operates at a TSR of 4.0
- b. Find the tip speed of the rotor
- c. What gear ratio is needed to match the rotor speed to the generator speed if the generator must turn at 1800 rpm?
- d. What is the efficiency of the wind turbine under these conditions?

a. Find the rpm of the rotor if it operates at a TSR of 4.0

Rewriting (7.30),



We can also express this as seconds per revolution:

 $rpm = \frac{26.7 \text{ rev/min}}{60 \text{ sec/min}} = 0.445 \text{ rev/sec or } 2.24 \text{ sec/rev}$

Example

b. Tip speed From (7.30): Rotor tip speed= $\frac{\text{rpm} \times \pi D}{60 \text{ sec/min}}$ Rotor tip speed = (rev/sec) $\times \pi D$ Rotor tip speed = 0.445 rev/sec $\cdot \pi 40$ m/rev = 55.92 m/s c. Gear Ratio

Gear Ratio = $\frac{\text{Generator rpm}}{\text{Rotor rpm}} = \frac{1800}{26.7} = 67.4$

4

Example

d. Efficiency of the complete wind turbine (blades, gear box, generator) under these conditionsFrom (7.7):

$$P_{W} = \frac{1}{2}\rho Av^{3} = \frac{1}{2}(1.225)\left(\frac{\pi}{4} \cdot 40^{2}\right)14^{3} = 2112 \text{ kW}$$

Overall efficiency:

$$\eta = \frac{600 \text{ kW}}{2112 \text{ kW}} = 28.4\%$$